

NSUF Partner Facility Capabilities and Recent Experience at PNNL

DJ SENOR

Pacific Northwest National Laboratory, Richland, WA, USA NSUF Partner Facilities Working Group Meeting, Idaho Falls, ID

Overview

- PNNL's NSUF Partner Facility contributions include three broad capability areas
 - Irradiated fuel and high-activity structural materials post-irradiation examination and testing – Radiochemical Processing Laboratory (RPL)
 - Irradiated low-activity structural materials post-irradiation examination and testing – Materials Science and Technology Laboratory (MSTL)
 - Irradiation experiment design, analysis, and fabrication

Receipt

Proudly Operated by Battelle Since 1965

PAS-1

- PNNL has recent experience with a number of US NRC licensed casks, including the NAC LWT, GE-2000, and PAS-1
- If activity levels permit, sample receipt in Type A shipping containers is very straightforward and far less expensive

GE-2000

NAC LWT

Cask Receipt and Unloading

- Casks are typically received and unloaded at the RPL's High Level Radiochemistry Facility (HLRF)
 - High-density concrete shield walls (1.2 m thick)
 - Viewing provided by six lead-glass windows (total thickness 1.2 m) optically coupled with mineral oil
 - Each window has a pair of heavy-duty Model E manipulators
 - A-cell Used for receiving 4.5 m wide x 2.6 m deep x 5.2 m tall
 - Horizontal loading through 0.5 m diameter port
 - B-cell and C-cell Used for size reduction 1.8 m wide x 2.6 m x 5.2 m
 - All three cells interconnected for easy transfer

Rod Puncture, Gas Analysis, and Gamma Spectroscopy

- Mechanical rod puncture
- Gas collection and online analysis system
 - Gamma energy analysis for radioactive gases
 - Mass spectrometry for non-radioactive gases
 - Can also quantify beta-emitting gases (e.g. tritium)
 - Total pressure determination
- Gamma spectroscopy with translating table
 - Axial resolution 2.5 mm
 - Maximum segment length 1.5 m

Visual Examination

- During receipt or subsequent handling activities in HLRF, visual examinations are routinely conducted using high-resolution photography and videography
- Cameras mounted in-cell or positioned with manipulators

High-resolution in-cell photograph of failed fuel rodlet with centerline thermocouple

High-resolution video capture of a zircaloy-clad fuel rodlet with Pb-Bi eutectic on the exterior, held in manipulator fingers

Initial Size Reduction

Proudly Operated by Battelle Since 1965

- Conducted in the HLRF hot cells
 - Cutting with low-speed metallographic saws or tubing/pipe cutters
 - Core drilling
 - Other similar size reduction operations with modified tabletop or hand tools

Cutting open a Ti capsule with modified pipe cutter

Precision Sectioning

- Precision sectioning to extract samples is conducted in either the Shielded Analytical Laboratory or a modular hot cell, depending on activity and availability
- Shielded Analytical Laboratory (SAL)
 - Six interconnected hot cells
 - 1.7 m wide x 1.7 m deep x 5.2 m tall
 - Shield walls are 1 m thick concrete and steel
- Modular hot cells (7)
 - Two cells 1.7 m wide x 1.5 m deep x 3.7 m tall →>
 - One cell 3.0 m wide x 1.5 m deep x 3.7 m tall
 - One cell 2.1 m wide x 1.5 m deep x 3.7 m tall
 - One cell 2.3 m wide x 1.7 m deep x 2.7 m tall
 - Two cells 2.0 m wide x 1.8 m deep x 1.8 m tall
 - Shield walls are 30 cm steel
 - Large access doors for easy equipment installation/removal
 - Multiple ports for passing samples, cables, gas lines, etc.

Mechanical Properties

- Bulk tensile properties of highactivity materials obtained using a load frame installed in one of the modular hot cells
 - Instron 8800
 - 9800 N and 98,000 N load cells
 - Intended for miniature sample testing
 - Demonstrated for SS-3 tensile and 3-point bend tests with specialized fixtures
 - Other sample types possible with appropriate fixtures

Mechanical Properties

- Pacific Northwest
 - Proudly Operated by Battelle Since 1965

- Centorr 2500°C W-mesh furnace
- Can use same fixture types as RPL hot cell load frame
- Fracture toughness of low-activity materials
 - Benchtop Instron 8801 servo-hydraulic load frame with 800°C tube furnace —

Optical and Scanning Electron Microscopy

- Fully-automated and remote-operated Nikon 200MA optical microscope
- FEI Quanta250 FEG SEM with EDS/WDS/EBSD
- JEOL 7600 SEM with EDS/WDS/EBSD
- Powder x-ray diffraction

Pb-Bi bond. Mosaic composed of over 500 individual high-magnification images

Casella et al. 2016. TMS.

Using EBSD to image strain gradients and twins due to local misorientation in cold rolled Ni-base alloy

SEM with Focused Ion Beam

Proudly Operated by Battelle Since 1965

- FEI Helios 660 Nanolab dual beam focused ion beam (FIB) SEM
 - For use on fuel, high-activity, and dispersible radioactive materials
- FEI Quanta 3D FEG dual beam FIB SEM
 - For use on low-activity, non-dispersible materials

TEM sample prepared in the Quanta FIB from proton-irradiated ZXF-5Q graphite

Transmission Electron Microscopy

Proudly Operated by Battelle Since 1965

- FEI Tecnai 330 keV TEM with EDS and Gatan ORIUS digital camera
- JEOL ARM 200CF aberration-corrected TEM with EELS
- ▶ JEOL ARM 300F (Grand ARM) aberration-corrected STEM to be installed in RPL in 2017

Nanostructured ferritic alloy simultaneously neutron irradiated and helium injected

Elemental map (EDS)
showing impurities
decorating the surface of
a pore in proton-irradiated
ZXF-5Q graphite

Senor et al. 2016, HPTW.

Atom Probe Tomography and Atomic Force Microscopy

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

- Atom Probe Tomography
 - LEAP 4000 XHR local electrode atom probe tomography instrument
 - 0.5 nm spatial resolution
 - Large area detector (eliminates chromatic aberration)
- Atomic Force Microscopy
 - A new AFM will be installed in RPL in 2017
 - Funded under DOE-NE Infrastructure call
 - Will include a variety of capabilities
 - Surface topography
 - Elastic modulus and nano-hardness mapping
 - Thermal diffusivity mapping

Phase identification in nano-structured $\alpha+\beta$ Ti alloy via APT and by noting selective arrangement of minor alloying constituents in each phase

Analytical Chemistry

Proudly Operated by Battelle Since 1965

Measured I	helium and	hydrogen ii	n STIP-II	samples.
------------	------------	-------------	-----------	----------

Sample Ma	Material	Fluence (10 ²⁵	$^{5}/m^{2}$)	Measured He		Measured ¹ H (appb) ^c	
		Proton	Neutron	⁴ He/ ³ He Ratio ^a	(appm ^b)	Sample	Control
Al-19	Al	4.45	9.06	18.9 ± 0.5	1114 ± 34	499 ± 160	71 ± 18
Ti-7	Ti	3.5	7.83	3.4 ± 0.4	1165 ± 83	37100 ± 16100	470 ± 72
Fe-20	Fe	2.45	7.02	20.6 ± 0.4	922 ± 26	804 ± 200	120 ± 76
Ni-1	Ni	2.45	7.02	17.9	955 ± 17	1030 ± 708	99 ± 13
Cu-23	Cu	2.45	7.02	13.1 ± 0.1	922 ± 21	1410 ± 42	56 ± 4
Nb-2	Nb	0.96	5.37	0.5 ± 0.0	488 ± 32	59800 ± 7850	149 ± 18
IB-1	Ta	3.24	8.71	2.2 ± 0.0	1059 ± 83	35300 ± 140	7020 ± 400
Au-11	Au	3.5	7.83	20.2 ± 0.4	1489 ± 8	132 ± 22	185 ± 47
Pb-1	Pb	2.95	7.0	6.1 ± 0.3	1001 ± 83	3340 ± 905	17 ± 0

Protium, He-3, and He-4 measurements in pure metals irradiated in STIP-II at SINQ

Oliver and Dai. 2009. *JNM* 386-388:383.

- Helium mass spectrometry
 - Measures ³He and ⁴He in parts-per-trillion concentrations in steels and other materials (~10⁸ atoms detection limit)
- Hydrogen isotope mass spectrometry
 - Measures individual hydrogen isotope concentrations to ppm levels
- TIMS
 - Useful for measuring isotopic abundance to determine burnup
- ► ICP-OES
- ► ICP-MS
- Gas mass spectroscopy
- Ion chromatography
- NMR spectroscopy (300 MHz)
- Raman spectrophotometry

^a Measured ⁴He/³He atom ratio.

^b Mean and 1σ concentration in sample in atomic parts per million (10^{-6} atom fraction).

^c Mean and 1σ concentration in sample and control in atomic parts per billion (10^{-9} atom fraction).

Surface Science

Proudly Operated by Battelle Since 1965

- Four Physical Electronics Systems
 - Auger Electron Spectroscopy
 - X-ray Photoelectron Spectroscopy
 - Secondary Ion Mass Spectroscopy
 - Scanning capability
 - Spatial resolution from 0.1 to 50 μm
- Fourier Transform Infrared Spectroscopy

Measurement of oxide thickness on Zircaloy-4 tubes by FTIR

Physical Electronics 560 for scanning AES, XPS, and SIMS on radioactive samples

Reactor Dosimetry

- Flux wires
 - A combination of mg-size pieces of very pure metals that have (n,γ) reactions
 - Distinct gammas
 - Covers the spectrum of interest
 - Typically encased in a low-activation capsule (e.g. V) so they can be counted via gamma spectroscopy without disassembly after irradiation
 - Using appropriate codes (e.g. STAYSL) along with good spectra, the energy-dependent fluence can be reconstructed from flux wire activation
 - Subsequent calculations (e.g. SPECTER) can be done to convert fluence to dpa
 - In the absence of flux wires (or in addition to them) sections of the irradiation capsule can be used to provide dosimetry data

Irradiation Experiment Design, Analysis,

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

and Fabrication

PNNL has capabilities and experience designing and fabricating experiments irradiated in ATR

- Thermal-hydraulics
- Structural engineering
- Both lead and drop-in experiments
- High precision machining and weld capabilities
- NRC- and INL-approved 10 CFR 50 Appendix B and ASME NQA-1 quality assurance programs

